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Abstract. Formalization of specifications is a key step towards rigor-
ous system design of complex engineered systems such as cyber-physical
systems. Temporal logics are a suitable expressive formalism for cap-
turing temporal specifications. However, since engineers and practition-
ers are often unfamiliar with the symbols and vocabulary of temporal
logic, informal natural-language specifications still are used abundantly
in practice. This tool paper presents the Temporal Assessments feature
in Simulink® Test™ that strives to achieve the best of both worlds. It
provides graphical user interfaces and visual examples for users to inter-
actively create temporal specifications without the need to author logical
formulae by hand, yet any user-authored temporal assessment is a valid
logical formula in an internal representation. Iterative folding of clauses
enables the specification to be presented to read like English language
sentences. Key highlights of the feature along with examples of authoring
and runtime verification of temporal logic specifications are presented.’
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1 Introduction

Model-Based Design of complex engineered systems involves the creation of com-
putational models and perfecting them as much as possible before building ac-
tual physical prototypes where design iterations and finding and fixing mistakes
can be costly. Requirement specifications are useful for establishing correctness
of design models. However, these specifications are often captured in natural-
language sentences in enumerated lists (e.g., in a spreadsheet). Such informal
specifications and can be incomplete, ambiguous, and inconsistent among each
other.

Temporal logics such as the Signal Temporal Logic [9] are a formal alternative
naturally suited for dense-time continuous or hybrid domain behavior evolutions
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seen in engineered systems, including cyber-physical systems. The research com-
munity has seen broad adoption of such logics for specification and runtime
verification: a representative list of relevant work includes [3,4,6,8,11,12, 14].
Yet, industrial adoption by practitioners has remained a challenge. One key bar-
rier is the lack of familiarity with logical symbols and formulae. For example, in
his HSCC 2015 Keynote, Deshmukh calls out formal requirements engineering
as a “grand challenge” and mentions “[hJow do [control designers] convey their
intentions without using formalisms?” as a “[k]ey challenge for Toyota, Bosch,
and others” towards that grand challenge [5]. As examples of additional barriers
to adoption, Kapinski posits that “[o]ne reason why formal requirements have
not yet been adopted by industry is that they can be difficult to create and
debug” and that “[a] remaining challenge is in creating methods to visualize, or
otherwise elucidate, the envelope (or complete set) of behaviors specified by the
requirements.” [2].

Starting with Release R2019a, Simulink® Test™ offers a new Logical and
Temporal Assessments functionality? that aims to address some of these chal-
lenges and make formal specifications more accessible to engineers and prac-
titioners. It provides a mechanism for authoring logical and temporal specifi-
cations via a graphical user interface (GUI) by simply filling out pre-existing
template patterns, that is, without the need to write out a logical formula by
hand. This interface provides visual representations of hypothetical passing and
failing behaviors at authoring time as visual feedback to the user. Evaluation of
specifications involves simulation of a Simulink® model specified as the system
under test (SUT). Hierarchical subexpression tree evaluation provides a visual
mechanism for the user to investigate assessment, and failing examples provide
graphical and textual explanation of failures. The rest of this paper presents key
details about authoring and evaluation of specifications using this functionality.

2 Authoring Temporal Specifications

We begin by covering some preliminaries.

2.1 Preliminaries

Simulink® is a graphical Model-Based Design environment for modeling, simu-
lation, and automatic code generation of engineered systems, including cyber-
physical systems. Simulink models are directed graphs with blocks forming nodes
of the graph and signal lines forming the edges of the graph. Formal definitions
of Simulink models and blocks can be found elsewhere [13] and are dropped from
this paper for brevity.

Blocks may have internal continuous-time and/or discrete-time state(s) that
are updated as per the corresponding differential and/or difference equations.
As a software implementation, each block must define its output method, and

2 https://www.mathworks.com/help/sltest/ug/temporal-assessments.html
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may define update and/or derivative methods to realize the corresponding equa-
tions as applicable. Simulink’s execution engine calls these methods in a pre-
determined order in a loop, called the simulation loop, until the simulation stop
time is reached [7].

Signal lines are buffered values computed by the output ports of the driving
blocks every time the output method gets called. In between such consecutive
output method calls, the last computed value is held until a new value overwrites
it. Note that for discrete-time blocks, this is a zero-order hold implementation,
which is actually a continuous-time signal with possible discontinuities.

2.2 Authoring Temporal Assessments via a Ul element

* LOGICAL AND TEMPORAL ASSESSMENTS*
» ASSESSMENT CALLBACK
ENABLED  NAME ASSESSMENT == VISUAL REPRESENTATION @

" PositionAlwaysMon-negative » At any point of time, position must be greater than or e /\ i

' No-Chattering » At any point of time, if position == 0 becomes true ther l‘ || |
> 0 must stay true for at least tau seconds 1 1 \ ’ | [ |

|
| |

| \
v Assessment1 ~ At any point of time ‘\/

trigger: <empty> | Guer Bound

with no delay ..

must stay true for at most

e - = velocity 7
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v Assessment2 - At any point of time Path- sidema_bounca/Second-Order Integrator

ndex: 2

eld/Element: stype an expression>

* ¢ fau

Expressiom: 0.001
yoe: greater than
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Expression: 0.01

= Add Assessment ~ = Add Symbol [ Delete

Fig. 1: UI Element for Authoring Logical and Temporal Assessments.

Logical and temporal specifications can be authored in structured English
from pre-existing templates and patterns. Figure 1 shows a user interface (UT)
element for authoring specifications. Clicking on ‘Add Assessment’ lets the user
choose from pre-existing templates and patterns to construct a specification.
The left half of the window in Figure 1 depicts a mechanism for users to author
specifications. Shown are a couple of new assessments with highlighted fields
for the user to interactively select variations and/or enter expressions, as well
as a couple of filled out and folded assessments that read like English language
sentences.

Table 1 depicts the three classes of template patterns available for users to
author. Custom formula captures if a given Boolean expression holds over all
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Table 1: Template Pattern Classes

Template Pattern Class||Equivalent Logical Formula

Bounds Check O (signal satisfies bound constraint)
Custom Formula O

Trigger Response O (p1 = O ¢2)

simulation time. Bounds check collection provides a set of frequently-used in-
stances of custom formula, where the expression is whether a given signal value
or a derived expression always stays above, below, inside, and outside bounds,
with Boolean combination of strict and/or non-strict inequalities (indicated us-
ing corresponding check-boxes) tabulated in Table 2.

Table 2: Bounds check patterns and variations.

Pattern Equivalent Logical Formula|Strict Variation(s)
Always less than O (z < ub) O (z < ub)
Always greater than ||O (z > 1b) O (z > 1b)
O ((z < ub) A (z > 1b))
Always inside bounds ||O ((z < ub) A (z > 1b)) O ((z < ub) A (z > 1b))
O ((z < ub) A (z > 1b))
O ((z > ub) V (z < 1b))
Always outside bounds||d ((z > ub) V (z < 1b)) O ((z > ub) V (x < 1b))
0 (= > wb) v (z < 1b))

Trigger response is a class of frequently-used temporal formulas of the type
O (¢1 = Ola,p] ¥2)- The various combinations of triggers, response delays, and
responses are tabulated in Table 3. Note that a logical condition becoming true
captures the rising edge of the evaluation of the expression from false to true.
This is typically not supported out-of-the-box in as an atomic expression in log-
ics, but is a shorthand, similar in spirit to rise and fall operators [10], provided to
the user who would otherwise need to construct a compound clause themselves.
Similarly, an expression staying true for a specified period is another shorthand
that absorbs a temporal operator within it. The three flavors of response delay
form the implications —, — Qo,p], and — Q[4,p) Tespectively.

The flavors for response conditions include when an expression evaluates to
true at the point of evolution as well as those where it evaluates to true and stays
true for a range of time intervals. Additionally, there is also an until operator
where a condition evaluates to true and stays true until a different condition
becomes true. This is a timed until, so there is a maximum timeout period that
the user can specify.
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Table 3: Trigger response pattern (¢1 — Qra,p) ©2) and its variations
Element | Variation

whenever <conditionl> is true

<conditionl> becomes true

Trigger <conditionl> becomes true and stays true for at least
(¢1) <conditionl> becomes true and stays true for at most
<conditionl> becomes true and stays true for between
Response ||[with no delay

delay with a delay of at most

(= Ola,p)) ||[with a delay of in between

<condition2> must be true

<condition2> must stay true for at least

Response [|[<condition2> must stay true for at most

(p2) <condition2> must stay true for between

<condition2> must stay true until <condition3> becomes true

2.3 Visual Representation

The top right corner of Figure 1 shows a visual representation of a fictitious
trace that would pass the selected lower bounds check. The user can regener-
ate additional passing and failing visuals including ones with a dynamic lower
bound in order to get a visual intuition about the kind of specification they are
entering. Note that these fictitious traces are not the actual behaviors of the
SUT model since at authoring time SUT simulation is not invoked. Appropriate
visual examples are also available for other templates such as trigger-response.

2.4 Symbol Resolution

The bottom right corner of Figure 1 shows the symbol mapping Ul element,
where the symbols appearing in authored assessments can be mapped to either
a signal in the SUT model or to an expression. The named symbol velocity is
shown to be mapped to a signal in the SUT model, whereas the symbols tau
and eps1 are mapped to simply their defined constant values. (In an alternative
implementation, they could have instead been mapped to workspace variables).

2.5 Example

As a running example, let us consider a bouncing ball model in Simulink (ex-
ample model sldemo_bounce that ships with the product) [1] as the SUT. We
express a logical bounds-check condition PositionAlwaysNon-negative, which
checks that the position of the ball always stays non-negative. This specification
is intended to be a sanity check that the model has been constructed correctly.
Additionally, we author a trigger-response specification No-Chattering, which
checks whether after each bounce, within a small time period €;, whether the
velocity remains positive for at least a specified finite time period of 7 seconds.



6 A. Rajhans et al.

Figure 2 shows the two authored specifications folded to read as English sen-
tences.

ASSESSMENT
» At any point of time, position must be greater than or equal fo 0

» At any point of time, if position == 0 becomes true then, with a delay of at most eps1 seconds, velocity
> 0 must stay true for at least tau seconds

Fig. 2: Example specifications for a bouncing ball model.

3 Runtime Verification of Temporal Assessments

Runtime verification of the logical and temporal assessments invokes a simu-
lation of the SUT and checks whether the simulation trace satisfies the spec-
ifications. Figure 3 depicts a passing evaluation of the sanity-check condition
PositionAlwaysNon-negative defined in Section 2.5. The Ul shows the assess-
ments, the symbols used in the assessment (in this case only position), and a
foldable subexpression evaluation tree.

@ PositionAlwaysNon-negative

» "= position
» At any point of time, position must be greater than or equal to 0
- PositionAl gative: At Fai
any point of time, position must o
be greater than or equal to 0 REE
Untested
2 4 8 8 10 12 14 18 18 20 22 24
« position must be greater than True
or equal to 0
False
Untested
] 2 4 [} 3 10 12 14 18 12 20 22 24
o B M
0
[ 2 4 [] 8 10 12 14 18 18 20 2 24
0
0
o 2 4 8 2 10 12 14 18 12 20 22 24

Fig. 3: Satisfaction of PositionAlwaysNon-negative.

The assessment No-Chattering from Section 2.5 turns out to be not satisfied
by the SUT. Figure 4 shows a portion of the Ul where we see a pictorial and
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textual explanation of the failure. There is at least one point in simulation time
(at 20.35 s) where the response condition of (velocity > 0) does not stay true
for at least 7 s. The explanation provides the exact simulation time within less
than 7 s from the trigger plus a delay of €; when it becomes false. It turns out
there are 94 other simulation times when the assessment also evaluates to false,
and the left and right arrows let the user navigate to other failure points in time
and read the corresponding failure explanation.

Error 1 of 95 v |

Expected Behavior Actual Result Explanation

Assessment ‘No-Chaftering’ failed when friggered at
2 s 20.3491505655398 s.
TRIGGER j TRIGGER « Trigger condition ‘(posifion == 0) is frue at
false —T o o e e e e Y 20.3491505655398 s
i : a : « Expected response conditon fo be true within
B T R bt 20.3491505655398 s and 20.3501505655398 s.

oL S — AReratmost o ie with a delay of at most 0.01 s after rising edge’ of

RESPONSE RESPONSE trigger.

: O rerrrriree] o

T R faaanaa Bdoacac a0 a0 e « Expected ‘(velocity > 0)' to be true at 20.3576369892822 s
- for at least 0.001 s, actual value at 20.3576369892822 s is
false

Fig. 4: Graphical and textual explanation of failure of No-Chattering.

Figure 5 shows another portion of the failing assessment Ul which shows
the foldable and expandable subexpression evaluation tree. The top trace shows
the evaluation of the overall assessment resulting in fail, pass, and untested
values over time. In case of trigger response formulas, since they take the form of
an implication (@1 — 2), the formula can be vacuously true when the trigger
precondition ¢ evaluates to false. All such points in time are shown in gray
(untested value), whereas shown in green (pass value) are those where the
trigger condition ¢ evaluates to true and the response condition ¢, evaluates
to true. All the failing points towards the end of the simulation are shown in red
(fail value) where the trigger condition ¢; evaluates to true but the response
condition - evaluates to false. Such an expression tree helps the user narrow
down the sources of failure in time (by zooming into the x axis as depicted) as
well as, in subexpressions and thereby in corresponding SUT elements they are
mapped to in order to debug the failures more quickly.

4 Discussion

This tool paper presented the new logical and temporal assessments function-
ality in Simulink Test which aims to make formal specifications accessible to
practitioners who may not be familiar with logic symbols and vocabulary. A
graphical user interface enables users to enter formal specifications without the
need to write out logical formulas by hand. Iterative folding of subexpressions
enables the formulas to be read like English language sentences. Yet, because
these are syntactically correct formulas by construction, they are formal and
unambiguous. Symbols used in the formulas can be mapped to expressions or
signals from a Simulink system-under-test model.
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~ No-Chatering: At any point in Fail - L A S S o S e ]
time, i (position == D) becomes
true then, with a delay of at most = ¢ ® ¥ ¢ 7
0.01 seconds, (velocity = 0) must Untested =) & & .S & L . N Y )
stay true for at least 0.001 seconds 20320 20332 20334 20330 2033 20340 20347 20344 20340 20343 20350 20352 20354 20350
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stay true for at least 0.001 seconds  yntested
20330 20332 20334 2033 20338 20340 20342 20388 20346 20348 20350 2035 20354 20358
» (position == 0) becomes true mj | | | | | | | | | | | | | ”l"
U'wasledJ
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]

20320 20332 20334 20330 20338 20340 20342 20344 20346 20348 20350 20352 20354 20350
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-
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Fig.5: Violation of non-chattering specification with a detailed expression tree
of assessment evaluation.

The design choices made in developing this functionality are based on the
voice of our industry practitioner customers since the early days of development.
For example, the supported classes of template patterns strive to achieve the
balance between expressivity (capture most commonly used specifications) and
simplicity (keep it intuitive for practitioners). Visualization examples provide
additional feedback to the user about whether the specification they are author-
ing is the one they have in mind. Lastly, the deliberate use of the untested value
is another such design choice because showing such vacuously true instances as
pass is non-intuitive to practitioners.

Our hope is that this new functionality facilitates broader mainstream adop-
tion of formal specifications by industry practitioners.
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