MATLAB EXPO 2016

What's New in MATLAB and Simulink

Mohamed Anas Stephan van Beek

R2015b R2016a

<u>ASML</u> Develops Virtual Metrology Technology for Semiconductor Manufacturing with Machine Learning

Rabobank Develops Goal Monitor to Optimize Portfolio of their Customers

<u>Vintecc</u> Develops PLC System for Multi-Axle Harvesting Machine Using Model-Based Design

Punch Powertrain Develops Faster and more Accurate Control for Switched Reluctance Motors using Zynq SoC

InMotion Student Team Develops the Racing Car of the Future

MATLAB EXPO 2016

Develop algorithms

Analyze data

write MATLAB code.

DESKTOP APPLICATION

WEB APPLICATION

DATABASE

Engineers and scientists...

deploy algorithms and applications within web, enterprise, and production systems.

MATLAB EXPO 2016

Model systems

Run simulations

build Simulink models.

combine MATLAB code and Simulink models together.

generate code.

connect software to hardware.

And it's all easier to do in the latest releases.

R2015b R2016a

Modeling and Simulation

Testing and Verification

Sharing and Collaboration

Performance

Modeling and Simulation

Testing and Verification

Sharing and Collaboration

Performance

MATLAB Live Editor

R2016a

Change the way you work in MATLAB

- See results together with the code that produced them, accelerating exploratory programming and analysis
- Add equations, images, hyperlinks, and formatted text to create interactive narratives
- Create lectures that combine explanatory text, mathematical equations, code and results

MATLAB Graphics

New look makes data easier to interpret and graphics objects are easier to customize

- New default line colors, fonts, and styles with antialiased graphics and fonts improve the clarity and aesthetics of MATLAB visualizations
- Steady stream of new features released
 - R2014b rotatable tick labels, automatic updating of datetime tick labels, and new visualization functions (histogram, animatedline)
 - R2015b increased control for customizing plot axes
 - R2016a new functions for polar plots, multiple y-axis plots, and for plotting mathematical expressions and equations

R2014b ... R2016a

One-Click Display

R2016a

Click a signal line when the simulation is running to view the current value

- Display port value for a signal by clicking it during simulation for easy debugging
- For bus signals, select the signals of interest before simulation

New Interface for Scopes

R2015b

View and debug signals with cursors and measurements

- Scope, Floating Scope, and Viewers all upgraded with new UI
- Includes simulation data analysis and debugging tools
 - Cursors
 - Measurements
 - Triggers

Modeling and Simulation

Testing and Verification

Sharing and Collaboration

Performance

Start Page

R2016a

Get started or resume work faster by accessing templates, recent models, and featured examples

- Create new Simulink models using templates as starting points to common modeling approaches
- Define your own templates for standardization
- Use fully developed example models as a reference as you set out to build your own models
- Access most recent Simulink models right from the start page

Automatic Solver Option

Set up and simulate your model more quickly with automatically selected solver settings

- Simulink will select a solver and step size that is optimized for your specific model
- Considers factors such as model stiffness and simulation performance
- All new Simulink models use the automatic solver option
- Can optionally lock down solver so that it does not change from one simulation to another

Simulink Units

R2016a

Specify, visualize, and check consistency of units on interfaces

- Specify physical units for Simulink signals and bus elements
- Identify unit mismatches at the component interfaces
- Automatically convert units
- Enforce consistency by restricting the unit system

% check message in

% queue

Messages

Model asynchronous operations in state charts using objects that carry data and can be queued

- New message object and queue
- Message Viewer block to visualize lifetime of a message
- Signal lines in Simulink to transfer messages between charts

% use message data for action

after(3,sec)

Processing

if M.data <=0.5 out = 1;

entry:

3D Vision

R2016a

Enables autonomous systems to map and measure the world

- Supports workflows for ADAS, autonomous driving, and robotics
- New functionality to support:
 - 3D point cloud processing
 - Structure from motion

Modeling and Simulation

Testing and Verification

Sharing and Collaboration

Performance

MATLAB Unit Testing Framework

R2013a ... R2016a

Write and run unit tests, and analyze test results

- xUnit-style testing framework for the MATLAB language
- Includes a set of readily available qualification methods, and supports automation, providing easy reuse of test-cases
- Includes script-based, function-based, and object-oriented interfaces

```
function tests = solverTest
tests = functiontests(localfunctions);
end
function testRealSolution(testCase)
actSolution = quadraticSolver(1,-3,2);
expSolutio
           %% Test Class Definition
           classdef MyComponentTest < matlab.unittest.TestCase</pre>
end
               %% Test Method Block
function t
               methods (Test)
actSolutio
expSolutio
                   %% Test Function
verifyEqua
                   function testASolution(testCase)
end
                        %% Exercise function under test
                       % act = the value from the function under test
                       %% Verify using test qualification
                       % exp = your expected value
                       % testCase.<qualification method>(act,exp);
           end
```


Simulink Test

Author, execute and manage simulation-based testing

- Build synchronized executable test environments
- Create inputs and assessments based on logic or temporal conditions
- Integration with Real-Time Testing R2016a

Deploying to Hardware

Run your models on low-cost hardware and stream data into MATLAB

- Acquire images from Raspberry Pi and Kinect V2 into MATLAB and Simulink
- Run Simulink models on Lego EV3,
 Raspberry Pi 3, Raspberry Pi 3, and Arduino Yun
- Adds to existing support for Arduino, Lego, and Raspberry Pi platforms

Modeling and Simulation

Testing and Verification

Sharing and Collaboration

Performance

MATLAB EXPO 2016

App Designer

R2016a

Develop MATLAB applications with an enhanced design environment and expanded UI component set

- Choose from standard components (buttons, check boxes, panels, etc.), as well as gauges, lamps, knobs and switches
- Quickly move between visual design and code development
- New object-based code format makes it easier to share data between parts of the app

Using MATLAB with Other Languages

Integrate MATLAB with other programming languages, including C/C++, Java, .NET, and Python

- Call MATLAB from another language
- Reuse legacy code written in another programming language within MATLAB
- Package MATLAB programs into languagespecific software components to integrate with other programming languages
 - Python support added in R2015b

Three-Way Model Merge

Graphically resolve conflicts between revisions within a Simulink project

- Resolve conflicts in model files under source control
- Provides an interactive comparison report with the two conflicting designs along with the original base model

Modeling and Simulation

Testing and Verification

Sharing and Collaboration

Performance

MATLAB EXPO 2016

MATLAB Execution Engine

Redesigned execution engine runs MATLAB code faster

- All MATLAB code can now be JIT compiled
- Average performance improvement of 40% on 76 performance-sensitive user applications
- A platform for future improvements
- Performance testing framework R2016
 - Measure MATLAB code performance
 - Interface leverages the unit testing framework

MATLAB EXPO 2016 Performance

GPU Acceleration and Parallel Computing

R2015b

Perform parallel computations using GPUs

- Accelerate applications using GPU-enabled functions
 - > 300 in MATLAB
 - > 90 in Statistics and Machine Learning Toolbox
 - > 50 in Image Processing Toolbox
- Use enhanced gpuArray functions for sparse matrices on GPUs

```
Transfer data to GPU
>> GX = gpuArray(X);

GPGPU Computation
>> GY = fft2(GX);

Gather data to CPU
>> Y = gather(GY);

Simple GPU code in MATLAB
```


MATLAB EXPO 2016 Performance 33

Modeling and Simulation

Testing and Verification

Sharing and Collaboration

Performance

<u>ASML</u> Develops Virtual Metrology Technology for Semiconductor Manufacturing with Machine Learning

Rabobank Develops Goal Monitor to Optimize Portfolio of their Customers

<u>Vintecc</u> Develops PLC System for Multi-Axle Harvesting Machine Using Model-Based Design

Punch Powertrain Develops Faster and more Accurate Control for Switched Reluctance Motors using Zynq SoC

InMotion Student Team Develops the Racing Car of the Future

MATLAB EXPO 2016

