
NXP Motor Control Toolbox
For MATLAB/Simulink Modeling and Code Generation
Mike Cao , NXP Automotive Senior FAE

Introduction: Model Based Design (MBD)

➢ Model Based Design is becoming more common during the normal course of software development to explain and implement
the desired behavior of a system. The challenge is to take advantage of this approach and get an executable that can be
simulated and implemented directly from the model to help you get the product to market in less time and with higher quality.
This is especially true for electric motor controls development in this age of hybrid/electric vehicles and the industrial motor
control application space.

➢ Many companies model their controller algorithm and the target motor or plant so they can use a simulation environment to
accelerate their algorithm development.

➢ The final stage of this type of development is the integration of the control algorithm software with target MCU hardware. This
is often done using hand code or a mix of hand code and model-generated code. NXP’s Model Based Design Toolbox allows
this stage of the development to generate 100% of the code from the model.

Introduction: Reduce Development Time With MBD Toolbox

System
Requirements

Modeling/
Simulation

Rapid Prototype

Target MCU
Implementation

HIL Testing

Functional Testing

Time

Use software-based model vs.
paper-based method, and start
testing at very earliest stage.

Convert model to SIL
and now can test ANSI-
generated software. Can
also use MDB library
with SIL testing.

With MC library and
MBD Toolbox, test
Model using target
MCU and compiler
through PIL testing.

With MC Toolbox, auto-generate
code for direct interface of
peripherals for target hardware
without any manual hand code.

Now that more testing on
target has occurred earlier
in the process, HIL testing
time is reduced.

Fewer defects found in this
phase of testing, where
finding defects is expensive.

Using NXP’s Model Based Design Toolbox you can reduce development time from this.

Reduce Time
from This. . .

Introduction: Reduce Development Time With MBD Toolbox

System
Requirements

Modeling/
Simulation

Rapid Prototype

Target MCU
Implementation

HIL Testing

Functional Testing

Time

To This!

Signal Visualization
and Data Acquisition Tool

Model-based design
Driver configuration
Assignment to pins
Initialization setup

Model Based DesingToolbox

with Simulink ™
NXP S32K EVB Kit

RAppID Bootloader Utility

Exposure to NXP’s hardware/software enablement

MTRCKTSBNZVM128

NXP DEVKIT-MPC5744P

Introduction: What Do We Do?

➢ One of the Automotive Tools
Enablement & Engineering
group’s objectives is to develop
software enablement tools to
assist our customers with rapid
prototyping and accelerate
algorithm development on their
target NXP MCU

➢ This includes software tools that
automatically generate
peripheral initialization code
through GUI configuration, to
generating peripheral driver
code from a Model Based Design
environment like Simulink™

➢ The Model Based Design Toolbox includes an embedded target supporting NXP MCUs and Simulink™ plug-in libraries which provide engineers with an

integrated environment and tool chain for configuring and generating the necessary software, including initialization routines, device drivers, and a

real-time scheduler to execute algorithms specifically for controlling motors.

➢ The toolbox also includes an extensive Automotive Math and Motor Control Function Library developed by NXP’s renowned Motor Control Center of

Excellence. The library provides dozens of blocks optimized for fast execution on NXP MCUs with bit-accurate results compared to Simulink™ simulation

using single-precision math.

➢ The toolbox provides built-in support for Software and Processor-in-the-Loop (SIL and PIL), which enables direct comparison and plotting of numerical

results.

Model Based Design Toolbox Overview

MathWorks products required for MBD Toolbox:
MATLAB (32-Bit or 64-Bit)
Simulink
MATLAB Coder
Simulink Coder
Embedded Coder

MBD Toolbox: Toolbox Library Contents

MBDToolbox
Library for S32K

MBDToolbox
Peripheral block

library

Simulink
Libraries

MBD Toolbox: Toolbox Library Contents

Peripherals

• General
– ADC conversion
– Digital I/O
– PIT timer
– ISR

• Communication Interface
– CAN driver
– SPI driver
– I2C

• Motor Control Interface
– Cross triggering unit
– PWM
– eTimer block(s)
– Sine wave generation
– ADC Command List
– GDU (Gate Drive Unit)
– PTU (Prog Trigger Unit)
– TIM Hall Sensor Port
– FTM (Flex Timer Module)
– PDB (Programmable Delay

Block)

Configuration/Modes

• Compiler Options

− CodeWarrior

− Wind River DIAB

− Green Hills

− Cosmic

− IAR

− GCC

− RAM/FLASH targets

• Simulation Modes

− Normal

− Accelerator

− Software in the Loop (SIL)

− Processor in the Loop (PIL)

• MCU Option

− Multiple packages

− Multiple Crystal frequencies

Utility

• FreeMASTER Interface

• Data acquisition /
Calibration

• Customize GUI

• Profiler Function

• Exec. time measurement

• Available in PIL

• Available in standalone

• Memory Read and Write

• MPC5643L

• MPC567xK

• MPC574xP

• S12ZVM

• S32K

MCUs Supported

MBD Toolbox: Auto Math and Motor Control Library Contents

General Motor
Control Library

General
Function
Library

General Digital
Filters Library

Mathematical
Library

MBD Toolbox: Auto Math and Motor Control Library Contents

MLIB

• Trigonometric Functions

• GFLIB_Sin, GFLIB_Cos,
GFLIB_Tan

• GFLIB_Asin, GFLIB_Acos,
GFLIB_Atan, GFLIB_AtanYX

• GFLIB_AtanYXShifted

• Limitation Functions

• GFLIB_Limit, GFLIB_VectorLimit
• GFLIB_LowerLimit,

GFLIB_UpperLimit

• PI Controller Functions

• GFLIB_ControllerPIr,
GFLIB_ControllerPIrAW

• GFLIB_ControllerPIp,
GFLIB_ControllerPIpAW

• Interpolation

• GFLIB_Lut1D, GFLIB_Lut2D

• Hysteresis Function

• GFLIB_Hyst

• Signal Integration Function

• GFLIB_IntegratorTR

• Sign Function

• GFLIB_Sign

• Signal Ramp Function

• GFLIB_Ramp

• Square Root Function

• GFLIB_Sqrt

GFLIB

• Finite Impulse Filter

• GDFLIB_FilterFIR

• Moving Average Filter

• GDFLIB_FilterMA

• 1st Order Infinite Impulse

Filter

• GDFLIB_FilterIIR1init
• GDFLIB_FilterIIR1

• 2nd Order Infinite Impulse

Filter

• GDFLIB_FilterIIR2init
• GDFLIB_FilterIIR2

GDFLIB

• Clark Transformation

• GMCLIB_Clark
• GMCLIB_ClarkInv

• Park Transformation

• GMCLIB_Park
• GMCLIB_ParkInv

• Duty Cycle Calculation

• GMCLIB_SvmStd

• Elimination of DC Ripples

• GMCLIB_ElimDcBusRip

• Decoupling of PMSM Motors

• GMCLIB_DecouplingPMSM

GMCLIB

• Absolute Value, Negative Value

• MLIB_Abs, MLIB_AbsSat
• MLIB_Neg, MLIB_NegSat

• Add/Subtract Functions

• MLIB_Add, MLIB_AddSat
• MLIB_Sub, MLIB_SubSat

• Multiply/Divide/Add-multiply

Functions

• MLIB_Mul, MLIB_MulSat
• MLIB_Div, MLIB_DivSat
• MLIB_Mac, MLIB_MacSat
• MLIB_VMac

• Shifting

• MLIB_ShL, MLIB_ShLSat
• MLIB_ShR
• MLIB_ShBi, MLIB_ShBiSat

• Normalisation, Round Functions

• MLIB_Norm, MLIB_Round

• Conversion Functions

• MLIB_ConvertPU, MLIB_Convert

MBD Toolbox: RAppID Bootloader Utility

The RAppID Bootloader works with the built-in Boot Assist Module (BAM) included in the NXP Qorivva and also supports S12
MagniV, Kinetis, and DSCs family of parts. The Bootloader provides a streamlined method for programming code into FLASH or
RAM on either target EVBs or custom boards. Once programming is complete, the application code automatically starts.
Modes of Operation

The Bootloader has two modes of operation: for use as a stand-alone PC desktop GUI utility, or for integration with
different user required tools chains through a command line interface (i.e. Eclipse Plug-in, MATLAB/Simulink, …)
MCUs Supported

MPC5534, MPC5601/2D, MPC5602/3/4BC, MPC5605/6/7B, MPC564xB/C, MPC567xF, MPC567xK, MPC564xL,
MPC5604/3P, MPC574xP, S12ZVM, S32K, KV10, KV3x, KV4x, KV5x, 56F82xx and 56F84xx.

Graphical User Interface Command
Line

Status given in two stages:
Bootloader download, then

application programming

FreeMASTER — Run Time Debugging Tool

User-friendly tool for real-time debug monitor and data
visualization

➢ Completely non-intrusive monitoring of
variables on a running system

➢ Display multiple variables changing over time
on an oscilloscope-like display, or view the data
in text form

➢ Communicates with an on-target driver via USB,
BDM, CAN, UART

Establish a Data Trace on Target
➢ Set up buffer (up to 64 KB), sampling rate and

trigger
➢ Near 10-µs resolution

USB
BDM
CAN
UART
JTAG
Ethernet

http://www.nxp.com/freemaster

MBD Toolbox: Summary of Application Support

External HardwareSystem Infrastructure

On-Chip
Peripherals

PINS

External
Connections

Application SW

Drivers

Drivers
Efficient

Reflecting the chip features

FreeMaster
Support

D
o

cu
m

e
n

ta
ti

o
n

SYSTEM APPLICATION

Ta
rg

et
 P

la
tf

o
rm

API

MC library set

Algorithm
Libraries

GFLIB
General functions

GDFLIB
Digital filtering

G
M

C
LI

B
M

o
to

r
C

o
n

tr
o

l

API

Bootloader
Support

User Application
Software

Model Based Design Steps: Step 1 (Simulation)

Idealized simulation of the controller and the
motor to refine the control technique. Done
on host PC without regard for embedded
controller. Can optionally add analog device
models for fault detection and signal control.

Controller Model

Electric Motor Model

Analog
Device ModelAnalog

Sensor Model

PI

Filter

PI

Filter

Reverse

Park

Transform

PWM

Modulation

PWM A

PWM B

PWM C

Zero

+

-

+

-

Torque

Control

IQ

loop

ID

loop

IQ

cmd

ID

cmd

ID

Va

cmd

Vb

cmd

Forward

Park

Transform

Forward

Clark

Transform

IA

IB

IC

Va

Vb

Motor Position

IQ

ADC

A/D
Conversion

Simulation in PC environment

Gate
Driver

PC Environment

Model Based Design Steps: Step 2 (SIL)

Still done on host PC without regard for
embedded controller. Instead using generated C
code that is compiled using a PC-based compiler.
Run same test vectors as in simulation for C Code
Coverage analysis and verify functionality.

(SIL) Generated code executes as atomic unit on PC

Gate
Driver

ADC

A/D
Conversion

Electric Motor Model

PI

Filter

PI

Filter

Reverse

Park

Transform

PWM

Modulation

PWM A

PWM B

PWM C

Zero

+

-

+

-

Torque

Control

IQ

loop

ID

loop

IQ

cmd

ID

cmd

ID

Va

cmd

Vb

cmd

Forward

Park

Transform

Forward

Clark

Transform

IA

IB

IC

Va

Vb

Motor Position

IQ

Controller Model
Analog

Device ModelAnalog
Sensor Model

PC Environment

Model Based Design Steps: Step 3 (PIL)

Execute the model on the target MCU and perform
numeric equivalence testing. Co-execution with MCU and
Model Based Design working together while collecting
execution metrics on the embedded controller of the
control algorithm. Validate performance on the MCU.

(PIL) Executes generated code on the target MCU

PC Environment + MCU

Gate
Driver

ADC

A/D
Conversion

Electric Motor Model

PI

Filter

PI

Filter

Reverse

Park

Transform

PWM

Modulation

PWM A

PWM B

PWM C

Zero

+

-

+

-

Torque

Control

IQ

loop

ID

loop

IQ

cmd

ID

cmd

ID

Va

cmd

Vb

cmd

Forward

Park

Transform

Forward

Clark

Transform

IA

IB

IC

Va

Vb

Motor Position

IQ

Controller Model
Analog

Device ModelAnalog
Sensor Model

Model Based Design Steps: Step 3 (PIL)

Verification and Validation at Code Level

➢ This step allows:

❖ Translation validation through systematic testing

❖ To demonstrate that the execution semantics of the model are being preserved during code generation, compilation, and

linking with the target MCU and compiler

➢ Numerical Equivalence Testing:

❖ Equivalence Test Vector Generation

❖ Equivalence Test Execution

❖ Signal Comparison

Example IEC 61508 and ISO 26262 Workflow for Model-Based Design with MathWorks Products*

PIL testing using MC Toolbox PIL Mode Support**

Real-Time Workshop Embedded Coder

traceability report or model vs. code

coverage comparison

Simulation (model testing),
model coverage, RMI

Model advisor, modeling
standards checking

Simulink / Stateflow / Simulink Fixed Point Real-Time Workshop Embedded Coder

*Workflow from The MathworksTM

Presentation Material Model-Based
Design for IEC 61508 and ISO 26262

** NXP MC Toolbox is part of Mathworks Workflow outlined in The
MathworksTM Material Model-Based Design for IEC 61508 and ISO
26262 as well as part of certification qualification tool suite.

Model Based Design Steps: Step 4 (Target MCU)*

Generate production code to run on embedded MCU with real motor
while collecting execution metrics on the embedded controller of control
algorithm. Validate performance on MCU and use FreeMASTER to tune
control parameters and perform data logging.

* I/O peripheral driver blocks can
be included in the model, providing
the analog driver interfaces needed
to directly interface to devices
external from the MCU.

Execute on Target MCU on ECM/EVB

Controller Model

Electric Motor

Output

Drivers*Input

Drivers*

PI

Filter

PI

Filter

Reverse

Park

Transform

PWM

Modulation

PWM A

PWM B

PWM C

Zero

+

-

+

-

Torque

Control

IQ

loop

ID

loop

IQ

cmd

ID

cmd

ID

Va

cmd

Vb

cmd

Forward

Park

Transform

Forward

Clark

Transform

IA

IB

IC

Va

Vb

Motor Position

IQ

Gate
Driver

ADC

A/D
Conversion

MCU with
Embedded Control
Module (ECM)

Model Based Design Steps: Summary

Step 1 — System Requirements:
MBD Simulation Only
Software requirements
Control system requirements
Overall application control strategy

Step 2 — Modeling/Simulation:
MBD Simulation with ANSI C Code using SIL
Control algorithm design
Code generation preparation
Control system design
Overall application control strategy design
Start testing implementation approach

Step 3 — Rapid Prototype:
MBD Simulation with ANSI C Code using PIL
Controller code generation
Determine execution time on MCU
Verify algorithm on MCU
See memory/stack usage on MCU
Start testing implementation approach
Target testing controls algorithm on MCU

Step 4 — Target MCU Implementation
ANSI C Code Running on Target Hardware and
MCU
Validation/verification phase
Controller code generation
Determine execution time on MCU
Start testing implementation on target ECM
Code generate control algorithm +
I/O drivers. Complete implementation on ECM.
Test system in target environment Utilize
calibration tools for data logging and parameter
tuning

Execute code on target MCU
Functional testing in target environment
Ensure execution on target is correct as well as
code generation on target is performing as
desired.

PC Environment PC Environment
PC Environment
+ MCU

MCU with
Embedded Control
Module (ECM)

Modeling style guidelines applied
Algorithm functional partitioning
Interfaces are defined here Testing of functional components of algorithm

Test harness to validate all requirements
Test coverage of model here
Creates functional baseline of model

Refine model for code generation
Function/File partitioning
Data typing to target environment done here
Scaling for fixed point simulation and code gen
Testing of functional components of algorithm
Test harness to validate all requirements
Test coverage of model here
Creates functional baseline of model
Equivalence testing

Controller Model

Electric Motor Model

PI

Filter

PI

Filter

Reverse

Park

Transform

PWM

Modulation

PWM A

PWM B

PWM C

Zero

+

-

+

-

Torque

Control

IQ

loop

ID

loop

IQ

cmd

ID

cmd

ID

Va

cmd

Vb

cmd

Forward

Park

Transform

Forward

Clark

Transform

IA

IB

IC

Va

Vb

Motor Position

IQ

Controller Model

Electric Motor Model

PI

Filter

PI

Filter

Reverse

Park

Transform

PWM

Modulation

PWM A

PWM B

PWM C

Zero

+

-

+

-

Torque

Control

IQ

loop

ID

loop

IQ

cmd

ID

cmd

ID

Va

cmd

Vb

cmd

Forward

Park

Transform

Forward

Clark

Transform

IA

IB

IC

Va

Vb

Motor Position

IQ

Controller Model

Electric Motor Model

PI

Filter

PI

Filter

Reverse

Park

Transform

PWM

Modulation

PWM A

PWM B

PWM C

Zero

+

-

+

-

Torque

Control

IQ

loop

ID

loop

IQ

cmd

ID

cmd

ID

Va

cmd

Vb

cmd

Forward

Park

Transform

Forward

Clark

Transform

IA

IB

IC

Va

Vb

Motor Position

IQ

Gate
Driver

Controller Model

Electric Motor

PI

Filter

PI

Filter

Reverse

Park

Transform

PWM

Modulation

PWM A

PWM B

PWM C

Zero

+

-

+

-

Torque

Control

IQ

loop

ID

loop

IQ

cmd

ID

cmd

ID

Va

cmd

Vb

cmd

Forward

Park

Transform

Forward

Clark

Transform

IA

IB

IC

Va

Vb

Motor Position

IQ

Gate
Driver

How to get it and where to find support

➢ Download MBD Toolbox: www.nxp.com/mctoolbox

➢ MATLAB: www.mathworks.com

➢ Support: https://community.nxp.com/community/mbdt

http://www.nxp.com/mctoolbox
http://www.mathworks.com/
https://community.nxp.com/community/mbdt

Thank you

