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ABSTRACT

Rapid control prototyping (RCP) is a widely used
technique for verifying a controller’s functional behavior.
Typically, RCP uses a target processor with ample
processing power and memory, which makes the
technique attractive for engineers exploring new
concepts. However, a large gap often exists between
the RCP target and the production ECU in terms of the
available code generation technology, the supporting
tool chain, and I/O hardware. Consequently, significant
work is required when migrating a controller from RCP to
production. Furthermore, due to cost constraints, RCP
systems are difficult to deploy in large numbers for fleet
testing or preproduction trials.

In response to the challenges associated with RCP,
automotive engineers are moving towards a technique
called on-target rapid prototyping (OTRP). With OTRP,
the code is generated, cross-compiled, and downloaded
either to the ECU used in production or a development
version of it with additional memory and instrumentation
support. OTRP enables engineers to use the same code
generator, supporting tool chain, and ECU hardware
during development, simplifying the migration to
production. In addition, due to the relatively low cost of
development ECUs, OTRP systems can be deployed in
large quantities.

This paper provides an introduction to Model-Based
Design and OTRP, a step-by-step approach for getting
started with OTRP using a new algorithm export
technique, and considerations for moving from OTRP to
production. An application example is provided to
illustrate how OTRP has been effectively used for a
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production-intent ECU program, which includes a novel
external mode implementation on a resource
constrained fixed-point embedded system.

INTRODUCTION TO MODEL-BASED DESIGN

A model represents a dynamic system whose response
is a function of its inputs, state, and time. Historically,
system engineers have used block diagrams as shown
in Figure 1 to model plant environments and physical
systems as well as to design ECU algorithms.

In recent years, graphical modeling environments
consisting of block diagrams and
state machines have been used to analyze, simulate,
prototype, specify, and deploy software algorithms in
production ECUs. Model-Based Design refers to the use
of models and modeling environments as the basis for
ECU development.
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Figure 1: Feedback controller model.

Automotive systems developed using Model-Based
Design include:

e Engine and transmission ECUs

e Hybrid, battery, and green vehicle systems

e ABS and chassis control systems



e Climate control and body electronics

e Instrument clusters and displays

e Radio receivers and audio signal processing
systems

Used throughout the system development life cycle,
Model-Based Design enables continuous verification and
validation of requirements, designs, and
implementations. This approach affords significant
advantages for formal software processes as well as for
any project on which risk management, error prevention,
or early error detection is priorities.

Model-Based Design comprises the following main
activities:

e Modeling and simulation

Rapid prototyping

Embedded deployment

In-the-loop testing

Integral activities

MODELING AND SIMULATION — A block diagram
model of a dynamic system is represented schematically
as a collection of blocks interconnected by lines that
represent signals. The signals are the inputs, outputs,
and states of the blocks.

Blocks and lines can be real or virtual. Virtual blocks or
lines have no effect on the simulation results but aid in
constructing or understanding diagrams. Blocks and
subsystems, whether they are real or virtual, can be
stored in custom libraries to facilitate reuse and
abstraction. Large models can be structured using model
referencing, wherein a top level model invokes lower
level models in a way that reduces memory consumption
and enables faster simulation and model update times.

Simulation can be accomplished in two ways. One way
is to use an in-memory representation of the model and
execute the simulation in an interpretive mode. The
second way is to generate code from the model and
execute the code using a technique known as simulation
through code generation. Interpretive simulation
provides users with more control of the execution
environment and greater interaction capabilities, but it
can be slower for large models. Simulation through code
generation provides less user interaction but more
speed. For this reason, it is also known as simulation
acceleration. Models using model referencing can
simulate in normal (interpretive) or accelerated mode.

RAPID PROTOTYPING - In bypass rapid prototyping,
code is generated from the controller or algorithm model.
The code is then cross-compiled and downloaded to a
high-speed (often floating-point) rapid-prototyping
computer where it executes in real time. 1/O is typically
managed by a memory pod or emulation device that is
connected to both the rapid prototyping computer and an
existing ECU, perhaps still residing in a vehicle. Other
I/O options include communication via buses, such as

CAN, and may require custom signal processing and
power electronics. The controller parameters are
tweaked “on-the-fly” during test drives or in the lab with
the actual plant (e.g., engine) and allow insertion of new
code to bypass existing ECU code. When a set of
parameter values is identified that enables performance
requirements to be met, the new algorithm is deemed
feasible. See Figure 2.
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Figure 2: Bypass rapid prototyping.

In OTRP, as with bypass rapid prototyping, code is
generated just for the controller portion of the model.
However, in OTRP the cross-compiled code is not
deployed to a rapid prototyping computer, but rather to
the embedded microprocessor or ECU used in
production, or perhaps to a close approximation of it
configured with a little more memory and I/O. OTRP
often uses an integer processor and thus needs a more
detailed, fixed-point model, as opposed to the floating-
point processors and models used for bypass rapid
prototyping. 1/0 is managed via standard ECU devices.

The host computer then optionally interfaces directly with
the ECU hardware, perhaps residing in fleet vehicles, for
parameter tuning using external mode or a calibration
tool. Controller parameters are then tweaked “on-the-fly.”
When performance requirements are met, the new
algorithm has been shown to be both feasible and
practical; that is, it will work in a production, resource-
constrained environment. See Figure 3.
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Figure 3: On-target rapid prototyping.



Table 1 compares traditional bypass prototyping with

OTRP.
Traditional RP On-Target RP
Purpose Useful for testing Useful for
new ideas and refinement and
green-field research | calibration of
designs during
development
Execution | Uses PC or non- Uses ECU or near-
Hardware | target HW production HW
Code Less emphasis on More emphasis on
Efficiency, | code efficiency and code efficiency and
I/O latency | I/O latency I/O latency
Programs | Works well for new Works well for delta
vehicle programs changes to existing
programs
Engineers | Typically done by Typically done by
systems engineers systems and
in R&D or advanced | software engineers
production in production
Cost and May require custom | May use existing
Convenien | real-time simulators | hardware, thus
ce and hardware, or more convenient
may be done with and less expensive,
inexpensive “off-the- | particularly for
shelf” PC hardware | deploying in large
and I/O cards numbers

Table 1: Traditional vs. On-target rapid prototyping.

EMBEDDED DEPLOYMENT - After rapid prototyping,
the controller model is often converted to a detailed,
executable software specification. There are a number of
factors to consider here, such as function and file
partition, startup and shutdown procedures, diagnostics,
and built-in test routines. The model is constrained and
elaborated to perform properly on embedded system
hardware.

Embedded code is then generated for the detailed
controller model and downloaded to the actual
embedded microprocessor or ECU as part of the
production software build. No simulation activity is
associated with this step. The key here is to ensure that
the final build has fully integrated the automatically
generated code with existing legacy code, I/O drivers,
and real-time operating system (RTOS) software.

IN-THE-LOOP TESTING - Simulation of models is one
of the first verification and validation (V&V) steps.
Testing models requires a more rigorous approach than
the ad-hoc simulation runs that are often used in early
algorithm development. Model testing demands a
systematic approach to the creation and execution of
test cases. Special blocks, such as signal builders and
assertions, facilitate this type of test procedure.
Structural coverage analysis for the model and the code
helps assess test completeness. After model testing,
there are several ways to test the generated code.

Software-in-the-loop (SIL) testing involves executing the
production code for the controller within the modeling
environment in non-real-time with the plant model. The
code executes on the same host that is used by the
modeling environment. A code wrapper generated with
the code provides the interface between the simulation
and generated code. See Figure 4.
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Figure 4: Software-in-the-loop testing.

Processor-in-the-loop (PIL) testing is similar to SIL in
that it too executes the production code for the
controller. However the code executes on the actual
embedded processor or an instruction set simulator, and
thus, verifies the code on the actual target. A CAN bus
or serial devices are used to pass data between the
production code executing on the processor and a plant
model in the modeling environment. As with SIL, PIL is
used for non-real-time testing of the generated code.
See Figures 5.

Simutink

Controller Model Plant Model

=

Code
Generation

;

Figure 5: Processor-in-the-loop testing.

For hardware-in-the-loop (HIL) testing, the code is
generated for the plant model. It runs on a highly
deterministic, real-time computer. Sophisticated signal
conditioning and power electronics are needed to
properly stimulate the ECU inputs (sensors) and receive
the ECU outputs (actuator commands). Whereas rapid
prototyping is often a development or design activity, HIL
serves as a final lab test phase before final system
integration and field tests commence. See Figure 6.
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Figure 6: Hardware-in-the-loop testing.

INTEGRAL ACTIVITIES — In Model-Based Design, a
number of integral activities span the entire development
cycle such as documentation. Documentation, like code,
can be automatically generated from models.
Documentation can be produced in a template form, to
which engineers add the content of each documentation
section. Requirements traceability is accomplished using
interfaces between blocks in the model and existing
requirements management sources. The code
generated from the model can also be traced back to the
blocks, enabling auditors to trace high-level
requirements all the way to the code, and trace code
back to the requirements. As with requirements
management, source control for a model is
accomplished outside the modeling environment using
existing source control products. Interfaces between the
modeling environment and source control tool are
available and enable developers to automatically check
in and check out models, as well as to document
changes.

STEP-BY-STEP OTRP APPROACH

There are two approaches to code generation for
embedded deployment. The first approach, algorithm
export, generates code for the functions and then
integrates them into the overall hand-written application.
The second approach, full executable generation, uses
the model to fully generate the entire application.

The algorithm export approach is better suited to
suppliers who need to port their models to multiple
processors and thus require more flexibility. The full
executable model requires that device driver blocks be
included with the model, even though the drivers are not
simulated. The full executable approach may be used by
OEMs who do not need algorithm portability because
they are locked down to one processor architecture for
several years. Figure 7 illustrates the algorithm export
approach.
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Figure 7. Algorithm export code generation.

The basic steps for performing OTRP are described
below. They begin with deciding if a full executable or
algorithm export technique should be used.

With either approach it is important to establish model
guidelines and code generation settings that enhance
design clarity and code generation efficiency. The
Simulink Model Advisor and the Code Generation
Advisor from MathWorks help in these areas. It is also
important to establish a baseline model and simulation in
floating point then convert to fixed-point if needed.Tool
automation for this conversion is quite useful here.

In summary, the initial Model-Based Design steps that
apply to both OTRP approaches discussed below are as
follows:

1. Establish model guidelines using Simulink Model
Advisor.

2. Establish code generation settings using Code
Generation Advisor.

3. Create the floating point algorithm design using
modeling tools. Simulink and Stateflow.

4. Convert to fixed-point data, if required, using
fixed-point automation tools.

5. Compare fixed-point and floating-point results.

FULL EXECUTABLE APPROACH - With full executable
integration, target-specific blocks are added to the
generic algorithm model created in the previous phase.
The target-specific blocks can represent device drivers
or target-optimized functions. Target-specific code
cannot execute on the host processor, so these blocks
typically specify a default value or pass-through behavior
used for simulation mode. To improve model portability,
developers should keep the algorithm component in a
separate subsystem or model from the target-specific
framework blocks.

In Simulink, S-functions are employed to create device
driver blocks. S-functions can be created by hand or



automatically generated using the Legacy Code Tool in
Simulink. The S-functions need to be in-lined to optimize
the generated code, which then calls the target-specific
code without a code wrapper.

Code replacement libraries are employed to create the
processor-optimized code. Typically, developers use a
code replacement library to map basic operators and
math functions to more optimized versions. For example,
with TFL it is easy to generate code with a pragma or
hardware instruction that enables automatic saturation
on overflow protection. Replacements can also be used
to create a highly optimized trigonometry function.

In addition to S-functions and code replacements,
developers need to create a custom main file and
automate the build process to invoke the cross-compiler
tool chain. The compilation, download, and execution
can be fully automated. These build customizations are
done using source file templates, template make files,
and hook APIs that help control the build process.

Finally, a System Target File can be created to enable
the fully customized build solution described above. A
more detailed discussion of these topics is available in
the Simulink Coder documentation [1].

The key steps can be summarized as follows:

1. Create a System Target File (STF) baseline
target without drivers.

2. Add device driver blocks using S-functions.

3. Add code optimizations using Target Function
Libraries.

4. Select the STF to generate and compile code.

5. Download and run the code on the target
processor.

6. Tune parameters using external mode or a third-
party calibration tool (optional).

Tuning parameters using external mode requires a
communication interface between the host and target.
Once this is established, external mode APIs can be
used to create a program for interactive communication.
A basic example that uses TCP/IP is provided with
Simulink, and other options are available.

For example, to use CAN, developers would need host
CAN support, perhaps using Vehicle Network Toolbox,
which they would use to communicate with the target’s
CAN support. A CAN Calibration Protocol (CCP) block
could be developed from scratch or ported from an
existing example. Then during code generation,
developers can select the option for creating ASAP?2 files
to define the data and memory locations.

See [2] for an example full executable OTRP approach
using in-house real-time operating system integration.

ALGORITHM EXPORT APPROACH - As with the full
executable approach, developers should establish model
guidelines [3] with code generation settings, and create
the floating- or fixed-point design. However, device
driver blocks are not going to be created since these are
in the hand-coded framework software. The framework
will also call the generated algorithm code. The key to a
successful call, or integration, is to establish the
appropriate call interface and reference but not redefine
the interface data.

Embedded Coder provides a number of options for
controlling the function signature of the generated code.
By default, it generates the initialize, step, and terminate
functions as void-void functions with global data.
Separate data structures are created for each category
of data in a Simulink model. Variables created for
Simulink inports, outports, parameters, and states are
each placed in separate data structures. Storage for
each of the structures is allocated by the generated
code.

Developers can change this default behavior and pass
pointers to each of the structures as arguments to the
initialize, step, and terminate functions. In this case, the
generated code will no longer rely on global data and
can be reused. The developer is responsible for
declaring storage for each of the data structures.

Developers can also explicitly control the prototype of
the initialize, step, and terminate functions. In addition to
the function name, developers can specify the argument
names, passing mechanisms (by reference or by value),
and qualifier. The dialog box for controlling a function
prototype is shown in Figure 8. This example is for a
Simulink model with four inports and one outport. The
default void-void prototype was changed to pass the
inputs in several ways, while the Simulink outport is set
to be a return value from the function.
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Figure 8. Function Prototype Control and Generated
Code.

The model data can be controlled using Simulink Data
Objects, MPT Data Objects, and Custom Storage
Classes (CSCs). Once a model signal or parameter is
associated with a data object, it is straightforward to
assign it a CSC, such as a global variable or get/set
access method. An imported extern CSC is useful during
algorithm export since it can reference an existing data
item (such as a calibration parameter defined outside the
model in a separate data dictionary) and use it in the
model and generated code without redefining it.

The key steps used to export an algorithm for embedded
system deployment are as follows:

1. Generate code with an appropriate call interface.
2. Establish import and export data interfaces.

3. Create files and functions as required for
integration with the external framework code.

4. Use the existing scheduler and production build
process to invoke the generated algorithm code.

5. Download and run the code on the target
processor.

6. Tune parameters using a third-party calibration
tool (optional).

CONSIDERATIONS IN MOVING FROM OTRP TO
PRODUCTION CODE GENERATION

With an OTRP framework established, it is a natural next
step to consider deploying in production. The activities
that may need to be refined include code optimization,
code verification, certification, and standards
compliance.

Code replacement libraries, discussed previously, are
optional for OTRPP but are crucial for production because
code needs to be highly optimized to reduce per unit
costs. This enables a direct mapping between the ANSI-
C code normally output by the code generator and the
target-specific code supported by a particular ECU
processor.

Once the code is generated, it is important to verify its
behavior. PIL testing, as described earlier, is an effective
verification mechanism. PIL is especially important when
target-optimized code is used since it is not possible to
test the target code on the host computer during
simulation. MathWorks offers a variety of PIL solutions,
including PIL APIs that enable developers to quickly
create their own target-based test bench.

See [4] for a description of TFL and PIL testing.

AUTOSAR (AUTomotive Open System ARchitecture)
represents a special case of external framework code.
This emerging automotive standard is well supported by
Simulink. When working with AUTOSAR, developers can
eliminate many of the steps described above and
instead select the AUTOSAR system target file provided
by Embedded Coder. They would then use a runtime
environment (RTE) generator to import the XML
description produced during code generation for target
integration.

Another emerging trend for high integrity production
ECUs is ISO 26262 certification. Refer to [5], which
describes the use of Simulink in IEC 61058 and I1SO
26262 applications.



CASE STUDY - AIPL

Automotive Infotronics Private Limited (AIPL) is a joint
venture between Ashok Leyland Limited and Continental
AG. It designs, develops, and adapts electronics
products and services for the transportation sector. The
charter of this organization is to offer products to
developing market OEMS meeting a better
price/performance point compared to existing products in
the market. The company develops electronic
components and software for units such as instrument
cluster applications, body control electronics and various
other control units mostly for both commercial vehicle
applications [6].

BODY CONTROL UNIT/MULTIPLEXER AND
INSTRUMENT CLUSTER DEVELOPMENT

The first two flagship products of AIPL are the body
Control  Unit/Multiplex (BCU/MUX) and Instrument
Cluster (IC) for a major Indian OEM. The software for
these products was completely developed in-house. The
application software was fully developed with
MathWorks products (MATLAB, Simulink, Stateflow, and
Embedded Coder) and the device driver layer was
developed with the CodeWarrior® IDE from Freescale®
for the BCU and with the SOFTUNE® IDE of Fujitsu® for
the IC. The models were verified for algorithmic
correctness through model-in-the-loop (MIL) simulation.
Using the Simulink Fixed Point product, the model was
converted to a fixed-point model representation, SIL
testing was used to verify target word length restrictions
and test for overflow conditions. To save time and
reduce the potential for build errors, MATLAB scripts
were written to facilitate automatic code generation of
the production code from the application models and to
compile the device driver files and application files.
These scripts are also responsible for linking the object
code and flashing it to the target processor.

MODEL AND MODELING ARCHITECTURE

The BCU (see Fig. 9), MUX (see Fig. 10), and IC (see
Fig. 11) work together in an integrated mode. The BCU
processes analog, digital and frequency inputs to derive
values that will drive the IC as well as digital signals to
directly drive vehicle loads.

The modules exchange their computed results with each
other and view commands using a modular approach
using  Simulink  Subsystems. Using non-virtual
subsystems to model the entire system application, AIPL
configured the code generator (Embedded Coder) to
generate code that interfaced smoothly with the hand-
coded scheduler.

In this process, for the CAN Calibration Protocol (CCP)
to work, the calibration parameters must be grouped and
placed in a predetermined section of memory. This was
achieved using #pragma directives for the target
compiler. To automate grouping of the parameters
during the code generation, AIPL engineers defined the
parameters that needed calibration as a custom storage
class (CSC). This caused the code generator to group

all the parameters of this storage class type under a
single directive. The name of the directive is target
dependent.

>

Figure 9. Body Control Unit (BCU)

Figure 10. Multiplexer (MUX)

Figure 11. Instrument Cluster (IC)

A key feature of this architecture is that it enables on-line
calibration of the target. For this purpose, the CAN
Calibration Protocol (CCP) is implemented through
Simulink external mode and Vehicle Network Toolbox.
For the BCU, the tunable parameters include module
thresholds, timings, vehicle parameters, and sensor
tolerances. For the IC running critical, vehicle-specific
algorithms this on-line tuning proved particularly helpful
for the OEM as many vehicle specific parameters
needed to be tuned. AIPL provided a MATLAB-based



GUI (see Figure 12) to enable the on-line parameter
calibration.

The ability to customize the Simulink model environment
to process user inputs has provided many design
capabilities that would otherwise be very difficult to
implement. In summary, the MathWorks tools provided
AIPL with a single environment for algorithm modeling,
in-the-loop simulation, verification and validation, code
generation, build and deployment, and calibration GUI
development. Combined with the ability to interface with
a running target, these capabilities would typically
require several different tools, with their associated costs
and integration issues.

| ]
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Figure 12. MATLAB-based GUI for calibrating the BCU
via CCP.

TESTING AND VALIDATION

After development, the AIPL products underwent an
exhaustive testing procedure for validation against the
customer requirements. Following these tests, the
products underwent field trials in the real vehicle.

PROJECT RESULTS AND CONCLUSION

For the BCU/MUX and IC, Model-Based Design reduced
development time of the application software by up to
40%. Moreover, compared to hand-coding, the model-
based approach made it easier to handle requirements
changes and resolve defects. Using MathWorks tools,
AIPL engineers specified the system requirement in the
form of model, and relied on code generation for the
implementation. This significantly shortened
development time on these products, for which time-to-
market was critical.

CONCLUSION

Automatic code generation with Model-Based Design
offers embedded system developers a number of
advanced options for prototyping, deploying, and
verifying production software. Understanding the
potential applications of code generation is important,
because simply applying the technology is not going to
improve production processes. Embedded system
developers must establish a production workflow that
leverages code generation technologies and yet fits
within well-established software engineering principals,
such as reducing complexity and establishing proper
procedures for verification and validation as well as
calibration.

The case study described how AIPL used Model-Based
Design to develop a Body Control Unit/Multiplex and
Instrument Cluster and reduce development time by
40%.
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