Documentation

我们为许可用户提供了部分翻译好的中文文档。您只需登录便可查阅这些文档

besselk

Modified Bessel function of second kind

Syntax

K = besselk(nu,Z)
K = besselk(nu,Z,1)

Definitions

The differential equation

z2d2ydz2+zdydz(z2+ν2)y=0,

where ν is a real constant, is called the modified Bessel's equation, and its solutions are known as modified Bessel functions.

A solution Kν(z) of the second kind can be expressed as:

Kν(z)=(π2)Iν(z)Iν(z)sin(νπ),

where Iν(z) and Iν(z) form a fundamental set of solutions of the modified Bessel's equation,

Iν(z)=(z2)νk=0(z24)kk!Γ(ν+k+1)

and Γ(a) is the gamma function. Kν(z) is independent of Iν(z).

Iν(z) can be computed using besseli.

Description

K = besselk(nu,Z) computes the modified Bessel function of the second kind, Kν(z), for each element of the array Z. The order nu need not be an integer, but must be real. The argument Z can be complex. The result is real where Z is positive.

If nu and Z are arrays of the same size, the result is also that size. If either input is a scalar, it is expanded to the other input's size.

K = besselk(nu,Z,1) computes besselk(nu,Z).*exp(Z).

Examples

collapse all

Column Vector of Function Values

Create a column vector of domain values.

z = (0:0.2:1)';

Calculate the function values using besselk with nu = 1.

format long
besselk(1,z)
ans =

                 Inf
   4.775972543220472
   2.184354424732687
   1.302834939763502
   0.861781634472180
   0.601907230197235

Plot Modified Bessel Functions of Second Kind

Define the domain.

X = 0:0.01:5;

Calculate the first five modified Bessel functions of the second kind.

K = zeros(5,501);
for i = 0:4
    K(i+1,:) = besselk(i,X);
end

Plot the results.

plot(X,K,'LineWidth',1.5)
axis([0 5 0 8])
grid on
legend('K_0','K_1','K_2','K_3','K_4','Location','Best')
title('Modified Bessel Functions of the Second Kind for v = 0,1,2,3,4')
xlabel('X')
ylabel('K_v(X)')

Was this topic helpful?