Documentation

This is machine translation

Translated by Microsoft
Mouse over text to see original. Click the button below to return to the English verison of the page.

我们为许可用户提供了部分翻译好的中文文档。您只需登录便可查阅这些文档

ordeig

Eigenvalues of quasitriangular matrices

Syntax

E = ordeig(T)
E = ordeig(AA,BB)

Description

E = ordeig(T) takes a quasitriangular Schur matrix T, typically produced by schur, and returns the vector E of eigenvalues in their order of appearance down the diagonal of T.

E = ordeig(AA,BB) takes a quasitriangular matrix pair AA and BB, typically produced by qz, and returns the generalized eigenvalues in their order of appearance down the diagonal of AA-λ*BB.

ordeig is an order-preserving version of eig for use with ordschur and ordqz. It is also faster than eig for quasitriangular matrices.

Examples

Example 1

T=diag([1 -1 3 -5 2]);

ordeig(T) returns the eigenvalues of T in the same order they appear on the diagonal.

ordeig(T)

ans =

     1
    -1
     3
    -5
     2

eig(T), on the other hand, returns the eigenvalues in order of increasing magnitude.

eig(T)

ans =

    -5
    -1
     1
     2
     3

Example 2

A = rand(10);
[U, T] = schur(A);
abs(ordeig(T))

ans =

    5.3786
    0.7564
    0.7564
    0.7802
    0.7080
    0.7080
    0.5855
    0.5855
    0.1445
    0.0812
% Move eigenvalues with magnitude < 0.5 to the 
% upper-left corner of T.
[U,T] = ordschur(U,T,abs(E)<0.5);
abs(ordeig(T))

ans =

    0.1445
    0.0812
    5.3786
    0.7564
    0.7564
    0.7802
    0.7080
    0.7080
    0.5855
    0.5855

See Also

| | | |

Introduced before R2006a

Was this topic helpful?